A comparison of two methods for T cell epitope mapping: “cell free” in vitro versus immunoinformatics
نویسندگان
چکیده
BACKGROUND Methods for identifying physiologically relevant T-cell epitopes are critically important for development of vaccines and the design of therapeutic proteins. As the number of proteins that are being evaluated for putative immunogenicity expands, rapid and accurate tools are in great demand. Several methods to identify T-cell epitopes have been developed, the most recent of which is a cell free system consisting of a minimal set of proteases incubated with HLA DRB1*0101, HLA-DM and whole antigen. Isolation and sequencing of the HLA bound peptides using mass spectrometry allows for the prospective identification of immunodominant T-cell epitopes. RESULTS We present here, a comparison of this cell free in vitro antigen processing system to an immunoinformatics approach using the EpiMatrix algorithm. Our comparison reveals that in addition to identifying a similar set of epitopes to the cell-free system, the immunoinformatics approach prospectively identifies more HLA-DRB1*0101 epitopes and can simultaneously analyze multiple HLA alleles. CONCLUSIONS Although the cell-free system incorporates antigen processing and MHC binding, the immunoinformatics approach identifies many validated epitopes with a very high degree of accuracy and can be performed much faster with far fewer resources.
منابع مشابه
A Novel Multi-Epitope Vaccine For Cross Protection Against Hepatitis C Virus (HCV): An Immunoinformatics Approach
Background: Hepatitis C virus (HCV) causes acute and chronic human hepatitis infections. Due to the high genetic diversity and high rates of mutations in the genetic material so far there is no approved vaccine against HCV. Materials and Methods: The aim of this study was to determination B and T cell conserved epitopes of E1 and E2 proteins from HCV and construction of a chimeric pepti...
متن کاملDesign of a Multi-epitope Peptide Vaccine against SARS-CoV-2 based on Immunoinformatics Data
Background and purpose: In 2019, the world has witnessed the emergence of a virus that caused acute respiratory distress syndrome in human with high mortality rates (approximately 3.7%). So far, no effective treatment has been proven against COVID-19. This study aimed at designing a multi-epitope vaccine combining several T-cell and B-cell epitopes of the SARS-CoV-2. Materials and methods: Bas...
متن کاملIn silico design a multivalent epitope vaccine against SARS-CoV-2 for Iranian populations
Background: Due to high genetic variation in human leukocyte antigen )HLA( alleles, epitope-based vaccines don’t show equal efficacy in different human populations. therefore, we proposed a multi-epitope vaccine against SARS-CoV-2 for Iranian populations. Materials and Methods: For this purpose, the proteins without allergenicity and high antigenicity as well as conservancy level from SARS-CoV...
متن کاملP-30: Developmental Capacity and Blastocyst Formation of Thawed Tetrahedral Versus Non-Tetrahedral 4-cell Stage Mouse Embryos After Vitrification
Background: It was reported in a literature that approximately one third of the 4-cell stage embryos did not exhibit a tetrahedral shape. Non-tetrahedral embryos showed a lower in vitro developmental potential than tetrahedral embryos. Recently vitrification technology has been widely employed for embryo cryopreservation. The objective of this study was to prove our hypothesis that vitrified - ...
متن کاملB and T-Cell Epitope Prediction of the OMP25 Antigen for Developing Brucella melitensis Vaccines for Sheep
Brucellosis, produced by Brucella species, is a disease that causes severe economic losses for livestock farms worldwide Due to serious economic and medical consequences of this disease, many efforts have been made to prevent the infection through the use of recombinant vaccines based on Brucella outer membrane protein (OMP) antigens. In the present study, a wide range of on-line prediction sof...
متن کامل